A ‘cure’ for type 1 diabetes? Dr Eli Lewis on holy grail trail

Prof Eli LewisDIABETES is not always the chronic progressive condition most doctors and dietitians believe it to be. Both type 1 and type 2 diabetes are shown to improve with diet. Now Israeli biochemistry and pharmacology professor Dr Eli Lewis could be changing the landscape significantly for type 1 diabetics. Here’s the background to his research on a new compound to treat the condition, and an update on a Q&A I had with him earlier this year. 

By Marika Sboros

Dr Eli Lewis, professor of clinical biochemistry and pharmacology at Ben Gurion University of the Negev in Israel, just may have stumbled across one of modern medicine’s most enduring holy grails: a way to reverse type 1 diabetes safely and effectively. Better still, he says, the  natural compound he uses to treat the condition has no negative side effects at the dose and duration he uses in his research.

Lewis’s research is on tissue damage that plays a role in type 1 diabetes. He says scientists have often overlooked and understudied this area. He came across it when he began researching the role of inflammation in injured islets back in 2003. Those islets are the  tiny clusters of insulin-producing cells in the pancreas His research also covers the effects of transfusions of an anti-inflammatory drug based on a protein the body produces naturally all the time, known as Alpha 1 Antitrypsin (AAT, or alpha1).

AAT has been used mostly only to treat emphysema. Lewis’s breakthrough research shows the protein’s promise via transfusion in reducing insulin dependence in type 1 diabetics, and in some cases actually reversing the condition completely, if caught early enough. He believes it may even help type 2 diabetes, again if the disease is caught early enough, and supported with lifestyle change, including keeping carbohydrates low. He says that’s common sense for diabetics whether type 1 or 2.

Also of interest: Diabetes can be cured! A doctor’s personal story 

Lewis says AAT is a form of “immuno-modulation’” with applications that go  beyond diabetes.  US researchers are currently studying it for inflammatory bowel disease in patients; US researchers in a Seattle trial say it can make the bone-marrow transplant prognosis “phenomenal. AAT is also being tested  in patients with ischemic heart disease for diminished cardiac scar size multiple sclerosis (MS).

Other diseases in the pipeline for testing include lupus and rheumatoid arthritis, transplants of all kinds and even pig-to-human grafting experiments that desperately need a safe therapeutic to accommodate the grafts.

Lewis and his team in Israel are focused on the immune assault on cells, which means they are limited in funding and scope. He is reaching out to collaborate with any group worldwide, “as long as it is as enthusiastic as we are”. Here, in a Q&A with me, Lewis explains how the AAT therapy works for type 1 diabetes:

First of all Dr Lewis, what’s a clinical islet?

Islets are these little tiny spheres  you have in your pancreas that is making insulin. A clinical islet is what you end up with when you have to name your laboratory in some way that’s relevant to your work. I try to combine everything to we do into one title.

I presume you’re talking about the islets of Langerhans that I learned about in biology at school?

Yes, precisely. Those are the ones. Every person has in his or her pancreas one million of these spheres, one million islets. In them, most of the cells are beta cells that make insulin. It’s the only hormone that is able to lower glucose in the blood, the only cells that make it, and it’s the only location where they are placed. So it’s a very dangerous situation when you consider that if you lose the beta cells for any reason, glucose will rise in the blood. It will just rise in the blood, that’s how it goes, no way to pull it down, there’s no other hormone.

You are referring here to type 1 diabetes?

Yes. It’s more precise to call type 1 diabetes type 1 auto immune diabetes. It is an auto immune condition, you literally see int he blood circulating antibodies against the islets, against insulin.  It used to be called juvenile diabetes, but we actually see it today also in adults.

What’s the trigger?

Ther can be many triggers. We still don’t know what no longer what instigates the actual condition, but it’s no longer reserved only for kids.

Type 1 diabetes is usually defined as a condition in which the pancreas does not make any insulin at all. Is that correct?

That’s what we call the end point of the disease, the point where the disease is called end-stage, as if there is no next step for it. You basically lose a mass of viable cells. Conventional treatment is insulin. It’s basically that component that’s missing in the blood circulating. The therapy is roughly 100 years old. There are different ways of introduction

The therapy is roughly 100 years old. There are different ways of introduction in  technology advancements, but it is still basically insulin. It is very difficult for us to know manually how much insulin you need at every moment. Insulin helps to treat patients.

What scientists haven’t addressed today is the cells that have expired with the actual disease, the death of the islets or their absence or function. Those are things I’m trying to alter.

You are using  Alpha-1 antitrypsin (A1AT, aka AAT or alpha 1) for that. It it a drug? In your research you say it’s natural compound that occurs in the body?

Precisely. It’s a molecule, a protein. Everyone of us makes this protein.

And people with Type 1 diabetes?

Actually yes, they also make it, but there’s a point which I’ll get back to in . We all make AAT in the bloodstream all the time. When we are sick, we make more of it. What do I mean by “sick”? Well, if you have flu, an infection, you feel horrible, inflamed, and the body makes more AAT in the blood. We’ve  known about that for decades; scientists have measure it. Doctors have used that level of higher AAT as if it were a marker of whether or not there was an actual infection or disease.

But if you study AAT deeply enough as I have done for past 10 years, it turns out it actually has a function. The body doesn’t just release it and increase the levels when we are sick. It does so on purpose appropriately so.

It’s one of a series of molecules we use to protect our tissues. Why do we need to protect our tissue when we are sick? Because of the drastic involvement of the immune system in correcting an infection, in clearing or decontaminating it. Our cells are very sensitive. The immune system has to use that platform of innocent, sensitive tissue to destroy bacteria, viruses, fungi, parasites, cancer cells, dead tissue

Meanwhile, the tissue suffers. It’s not the best way to go through illness.

At the point when AAT rises in the blood, it circulates in the body systemically, it reaches everywhere; some tissues – like the lungs and gut – make the molecule for their own sake. it helps to facilitate closing these micro wounds. It speeds up the wound healing process. It is anti-inflammatory, so it downplays inflammation.

It allows inflammation to exist, but at a very low level. And when you are sick, your body enjoys this extra protection around the areas that are experiencing the immune event.

So what can it do for people with type 1 diabetes?

AAT has a very close relationship with diabetes. It turns out that circulating glucose levels, when they are high, actually stick to proteins. You may know about the measurement HbA1C –  Hb for haemoglobin, A for adult, and 1C means it is coated with glucose. It’s actually stuck to glucose.

In both type 1 and type 2 diabetes, everything in the blood gets coated with glucose. When it is coated with glucose, even albumen gets coated with glucose, everything you put in a glassful of glucose over time will be coated. You don’t need enzymes to do that.

For AAT, this means it becomes inactivated. It has been shown for the past almost 20 years, that what levels of AAT the body makes becomes inactivated in diabetics; it’s not functioning.

In the clinical trials we have been running to see if AAT infusion could alter the disease, the first thing we found (with patients) was when they came in, they had an inactive form of AAT.

What form of AAT do you use for type 1 diabetics via transfusion?

It is purified from plasma. So we are basically introducing the native molecule that is in the plasma. Companies that work with blood products share 50 000 litres of plasma globally. (I learnt this recently). They extract human albumen, human anti bodies for medical purposes, and AAT enjoys this extraction. It is purified and bottled up, and the reason they do that has nothing to do with diabetes.

We came very late with the concept of AAT for type 1 diabetes, before we knew about the advance (for its use) in another disease, A1AT deficiency. Medical textbooks will have half a page on it, showing that if you have less than normal AAT genetically, it turns out that it is slightly mutated; instead of being produced and released into the blood, it is just produced and stuck in the cells.

For those individuals, that doesn’t change much until they develop lung emphysema – the breakdown of the lung walls; also they endure more inflammatory bouts, vasculitis (inflammation of blood vessels), things like that , from having lower levels of AAT.

So AAT can be used to treat emphysema effectively?

At present, that’s almost the only indication. But we feel lucky because for the past 30 years it has been bottled up on the shelf exactly for this rare condition – around one in 10 000 individuals roughly will be diagnosed with A1AT deficiency. They are eligible for AAT infusions

It’s wonderful, when you consider that we have a drug or regimen to give to people, including children, maybe for life, men to give to kids, and who knows maybe, for life, you are not sure. Ten years ago we decided to adhere completely to testing on safety and feasibility on a drug already identified  as usable and clinically safe.

How long would it take to reverse type 1 diabetes using this drug?

We have a lot more experience now than we had before. At the time we started testing AAT infusions in patients, it took a very long while to identify the window of opportunity.  In pre-clinical studies, in the early years of intensive experiments in animal studies, we discovered that it takes a few weeks at least for the immune system to alter for the better. It can’t be done overnight, or a week or two. It needs four weeks at least in mice and rat models.

Will you be doing human trials soon?

Oh yes, the next trial is running already – one at Ben Gurion University, two others currently recruiting in the States; we have several teams in multi-centre working on it.

This is really revolutionary! Is your hypothesis that this will be a long-term cure or you don’t know that at this stage?

We don’t know exactly. The longest we have followed a patient that has been treated for a while with AAT, is eight years. That is in a child who was on AAT for eight weeks and still has no need for insulin. He is still making his own after eight weeks of infusions.

But that said, we still have to find the best window opportunity for each patient. We think it is very close to that close to time of diagnosis, so that really doesn’t help those who are years down the line with the disease.

All clinical trials will usually always recruit individuals who are soon after diagnosis, as that it the dynamic point of the disease. One clinical study of 59 patients showed that all started to make their own insulin after receiving 37 weeks of AAT, so it could be that the longer the better. But we never knew at the time, so we could afford to try it for a few weeks and then stop.

But also, every type 1 diabetic is slightly different. It depends on at what age the patient gets it, the age of onset, the patient’s background, level of antibodies that goes up and down, other diseases that may be present. So we don’t think this will be a uniform, mass treatment. Type 1 diabetes is a disease that deserves to be individualised.

Yes, personalised medicine is proving to be the way to go, and also I presume, supported by lifestyle change?

That is always in the background – one of things that I strongly support. I tell  parents all the time that they have actually have a lot more information that all the medical groups put together. When parents have a child who is type 1 diabetic and the years go by, they individually calibrate what ’s good and not good for the kid, what aggravates the condition, what fits well. They know best.

There are no two kids who get the same diet, but the longer the parents follow what works, the better they fit the diet to their kids. And when the kids grow up they follow this on their own. They are very responsible individuals, very aware of themselves.

What about the role of carbohydrate in the diet for diabetics?

In diabetes, the pancreas in this disease is suffering an attack, an assault; the pancreas is injured. High levels of glucose destroy these spherical entities, the islets. They are sensitive in ways that mean they can actually expire if someone has a lot of glucose.

Carbohydrates – consider them macromolecules of a lot of sugar – actually  burden the system,  especially for someone with type 1 diabetes. Carbohydrates force the pancreas to work harder. I will never say something like reduce (carbohydrates) to zero percent anything. We have never been designed to survive on earth with diets that contain zero percent anything, just moderation and common sense. It make intuitive sense to keep carbohydrates down.

Can AAT treatment help type 2 diabetics as well?

Good question.  First of all, you have to consider that this molecule, and shedding light on a particular juncture in immunology, is not necessarily restricted to type 1 diabetes. That’s because there is an interface where inflammation, immune cells and suffering cells meet. AAT disengages some of those vicious cycles that tend to aggravate themselves.

We have to consider other immune conditions. There is some evidence that AAT infusion can help to deviate the course of multiple sclerosis (MS). That’s an exciting (avenue of research), as my mother suffered from MS. It was from a pre-clinical study done between our group at Ben Gurion University and (US scientists) in Portland.

What about negative side effects?


So far none at the range we are considering, and at the duration, definitely.

People until now have taken (AAT) for life and at higher doses. (For diabetes), we mimic those doses and limit treatment for several weeks. Safety is no issue. In fact, even the FDA (Food and Drug Administration, the US regulatory body) immediately approved phase 2 trials of AAT in patients. There was no need for toxicology trials because it was clear that nothing bad happens to healthy people who take it.

That’s impressive, but clinicians find it hard to accept. And of course, you would want to know what happens long-term, after many years. Well, these patients have been followed for 13 years, 25 years on AAT infusions. That’s very long-term for weekly infusions. And we do know that if anything, patients have lower infection rates, and lower cancer rates than normal populations. Because they are being treated all the time with A1AT, their bodies are basically submerged in this mode where their immune system is functioning but their tissues are protected.

So this is one of the holy grails of modern medicine – a cure for diabetes, but not only for type 1 diabetes, as it has many other applications?

You mention type 2 diabetes. It is in many ways worse than type 1 diabetes, because type 2 diabetics have usually had the condition for  more than 10 years.

Type 2 diabetes often goes undetected for a very long time. Usually, if you ask type 2 diabetics what causes a doctor to diagnose it, they say that it could have been a routine check up at work, and suddenly their glucose levels were very high. All that time AAT is neutralised, inactivated, hard to control, in people whose lifestyle is pretty much fixed.